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Abstract: In this paper, by using closing prices of CSI All Share Health Care Index on a
daily basis from January 4, 2005 to November 29, 2019, constituting 3624 daily in-sample
data points, the ARMA-GARCH model under different error distributions are employed to
analyze and predict the index returns and prices. The empirical results demonstrate that the
return rate of CSI All Share Health Care Index is volatility clustering, with non-normal
characteristics of high kurtosis and fat tail, while no strong evidence of the existence of
leverage effect has been found. Contrary to the expectation, although the ARMA(1,1)-
GARCH(1,1) model under student’s t distribution shows the best fitting effect, it presents a
poor short-term forecasting performance for the index. Based on the result, a
recommendation can be made that it is necessary to further consider relevant factors and
explore the combination of nonlinear models so as to improve the prediction accuracy.

1. Introduction

With the rapid development of China’s capital market, how to extract useful information from
highly dynamic and complex financial time series for prediction has become important for market
participants to make decisions on financial investment and risk management, which has also raised
scholars’ interest in studying the characteristics and changing laws of returns and risks of Chinese
securities markets for the last two decades. As compared to other domestic studies, this paper has
selected CSI All Share Health Care Index as the experimental object rather than broad-based market
indexes mostly used by Chinese scholars. The health care sector in China has demonstrating a good
investment value, while the recent Chinese policy of Purchase with Volume has triggered large
fluctuations in the sector, arousing much attention from investors. Thus, it is meaningful to analyze
the features of returns and its volatility of the sector index.

To capture features of financial time series, a growing number of empirical studies have
attempted to establish more effective statistical models, modifying some unrealistic assumptions of
traditional econometric models. In 1982, the ARCH model was first put forward by Engle to
estimate the variance of inflation in the UK, which successfully depicted the volatility clustering
effect of financial time series[1]. Based on the ARCH model, Bollerslev(1986) proposed the
GARCH model, which is essentially a return-based model and has proven to be widely-used for
modeling the time-varying conditional volatility[2]. Curto et al.(2009) first used the ARMA-
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GARCH model based on different error distributions to conduct an empirical study on the daily
return rate of stock market indexes[3].

Inspired by western statistical theories, many domestic scholars have conducted similar
experiments on the securities market in China. For instance, Qiming Tang and Jian Chen (2001) and
Wanbo Lu (2006) both took SSE(Shanghai Stock Exchange) composite index and SZSE(Shenzhen
Stock Exchange) component index as empirical objects, showing that there was an obvious ARCH
effect of the stock market in China. Additionally, the former found that there was a weak negative
correlation between the returns and volatility of the stock market in China[4], and the latter pointed
out that the non-parametric GARCH(1,1) model would significantly improve prediction accuracy of
the volatility of index returns[5]. In 2012, Bo Wang showed that ARMA-GARCH model under
student’s t distribution could make the optimal fitting effect on SSE composite index returns during
the period of September 30, 2004 to September 30, 2011[6]. Qi Yang and Xianbing Cao(2016) used
the ARMA-GARCH model to predict stock prices and supported the model effectiveness on short-
term forecasting[7].

From the perspective of numerous empirical findings, the most representative and classic model
applied to analyze the conditional expectation and heteroscedasticity of univariate returns series is
ARMA-GARCH. Thus, this paper aims to employ the ARMA-GARCH model to analyze
characteristics of the index returns and its volatility of health care sector in Chinese stock market as
well as test short-term forecasting performance of the model. The daily data comes from closing
prices of CSI All Share Health Care Index from January 4, 2005 to November 29, 2019.

The remainder of the paper is organized as follows. Section 2 provides the econometric models
and methodology for this research. Section 3 describes the data collection and the statistical
characteristics of sample. Section 4 shows the empirical analysis and results, which includes the
stationarity test, autocorrelation test, model estimation and forecasting. Section 5 concludes.

2. Econometric Methodology

2.1. ARMA Model

In the 1970s, Box and Jenkins, two statisticians, first proposed the ARMA(Autoregressive and
Moving Average) model, which has been commonly used in modeling stationary time series with
complex autocorrelation behavior. The process is jointly characterized by the p-order autoregressive
model and the q-order moving average model, reflecting the dependence of the present observed
value on its own lag value (the historical observed value) and the lag value of white noise (the
present and past impacts of various random factors). The general expression is as follows.
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Where, Yt is the observed value, c is the mean of {Yt }, p and q are the lag order, φi (i=1,2,…p)
and θj (j=1,2,…q) are the parameter of AR process and MA process, respectively, εt obeys white
noise process with zero-mean.

2.2. GARCH Model

In the field of macroeconomics and finance, it is common to discover that many time sequences
have the characteristic of volatility clustering, which will cause the forecast to vary over time.
Therefore, depicting volatility plays an important role. The ARCH model, a basic model to describe
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the volatility proposed by Engle(1982), however, is not applicable to heteroscedasticity function
with long-term autocorrelation in practice. In order to better deal with high order autoregression,
Bollerslev(1982) brought forward the GARCH(Generalized ARCH) model, setting the conditional
variance as a linear function of historical market impact and past conditional variance. The general
expression is as follows.
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Where, r and s are the lag order, ω,αj ,βi are respectively the coefficients of intercept term, ARCH
term and GARCH term of variance equation. To guarantee positive conditional variance of return
rate and stationary process, this model has several essential conditions: ω>0, αj ≥ 0, βi ≥ 0, and the
sum value of αj and βi should be less than one. The closer the sum value approaches to one, the
higher volatility persistence is reflected by the returns series.

Here, the error term zt in a standard GARCH model is often assumed to obey a normal
distribution. However, due to non-normal characteristics showed by many financial time series,
other non-normal distributions should be given priority to consider. Moreover, when the conditional
mean equation is ARMA, the expression of ARMA(p,q)-GARCH(r,s) model can be a combination
of Equation (1) and (2), used to describle the condition mean and the condition variance of the
returns series.

2.3. EGARCHModel

Since the market impact in the GARCH model is devised in the form of squares, it is impossible to
judge the impact differences between negative and positive shocks on volatility. Thus, Nelson(1991)
proposed the EGARCH(Exponential GARCH) model, which can explain the asymmetric impact of
market shocks on volatility.The expression can be written as:
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Where, the parameter γj measures the asymmetry effect. If the value of γj is significantly
negative, it suggests bad news have a more significant influence on conditional variance. In other
words, returns on assets are more volatile when prices fall, which is usually called leverage effect.

3. Data

The experimental object adopted in this article, CSI All Share Health Care Index, consists of stocks
with high liquidity and good market representation in the health care sector of Shanghai and
Shenzhen stock markets, which is a better reflection of overall performance of the listed companies
in this particular sector. To ensure a sufficient sample size, daily closing prices of CSI All Share
Health Care Index are collected, regarding the period ranging from January 4, 2005 to December 31,
2019, making up a total of 3646 observations. Then, the first 3624 data from January 4, 2005 to

(2)

(3)
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November 29, 2019 have been adopted as the estimation sample, while the last 22 data have been
used as out-of-sample period for forecasting. The total daily data set used in this article is supplied
by the WIND database, and the calculation results are realized by R software.

Compared with index prices, index returns better reflect investment opportunities of assets as
well as have statistical characteristics easy to deal with. Therefore, the sample data is preprocessed
with logarithm and first-order difference to obtain daily index returns which are defined by Rt=ln(Pt)
-ln(Pt-1). Where, Pt and Pt-1 represents the index closing price at time t and time t-1, respectively. Rt

is the daily index returns in a logarithmic form, and Rt series will be used as the modeling object in
this paper.

Figure 1, below, illustrates that the daily returns of CSI All Share Health Care Index are moving
around the approximately zero with time-varying clustering fluctuations. This suggests the trend
variation has been basically eliminated, and the small(or large) fluctuations of returns tend to be
followed by small(or large) fluctuations, leading to a preliminary confirmation on stationarity of the
Rt series and existence of heteroscedasticity.

Table 1, below, reports the descriptive statistics of sample. The daily return rate of has a mean of
about 0.0006 and a standard deviation of about 1.86%. The skewness value is negative. The kurtosis
value is greater than 3, showing a fat tail. In addition, the test value of Jarque-Bera statistic is
1558.2, which is large enough to reject the null hypothesis of normal distribution. Hence, non-
normal error distributions are preferred to consider in the process of subsequent modeling.

Figure 1: Daily returns series of CSI All Share Health Care Index from January 4, 2005 to
November 29, 2019.

Table 1: Descriptive Statistics.

Observations Mean Std. Dev. Skewness Kurtosis JB
statistic Probability

3623 0.00063 0.01855 -0.58932 5.98703 1558.2 0.00000

4. Empirical Analysis and Results

4.1. Stationarity Test and Autocorrelation Test

Before establishing ARMA models, it requires to take a stationarity test and an autocorrelation test
so as to determine whether the relevant model is suitable to analyze the series.

For the stationarity test, a widely-used method is ADF (Augmented Dickey-Fuller) Test. Table 2
has listed the testing result. It shows that in the process of successively removing the trend term and
drift term, the t statistic of ADF test has always been obviously lower than the test critical value at
1% significant level. Thus, the null hypothesis of unit root should be rejected, indicating the Rt

series meets the stationarity requirement of modeling. Besides, it is found that in the cases involving
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trend term or drift term, the coefficient of drift term is marked at the significance level of 10%,
which suggests that the Rt series might be a stationary process with intercept term.

For the autocorrelation test, two methods, Ljung-Box test (LB statistic) and Box-Pierce test (Q
statistic), are adopted in this paper. Table 3 has given the results of 8 lags as well as the values of
AC and PAC (autocorrelation and partial autocorrelation function). Under each order of lag, the
associated probability values corresponding to all of the LB statistics and Q statistics are
approaching to zero, rejecting the null hypothesis of pure random. Hence, the Rt series have the
autocorrelation and can be extracted more useful information by establishing the mean equation like
the ARMA model.

Table 2: Stationarity test results.

Coefficient Trend type Drift type None type

ADF test term -0.9675***
(-42.827)

-0.9665***
(-42.798)

-0.9644***
(-42.736)

Drift term 0.001358*
(2.206)

0.000607*
(1.974)

Trend term -4.140e-07
(-1.408)

Notes: t-statistic in parentheses indicate the coefficients’ significance at the 10%, 5% and 1% levels,
respectively.

Table 3: Autocorrelation Test Results.

Lag
Period AC PAC LB

statistic Q statistic Probability

1 0.076 0.076 20.719 20.702 0.000
2 -0.040 -0.046 26.434 26.410 0.000
3 0.043 0.050 33.287 33.254 0.000
4 0.018 0.009 34.462 34.427 0.000
5 -0.023 -0.021 36.350 36.312 0.000
6 -0.031 -0.028 39.785 39.739 0.000
7 0.042 0.044 46.064 46.002 0.000
8 0.016 0.009 47.035 46.970 0.000

4.2. Model Estimation

First, to better describe the mean of the Rt series, AR(1), AR(2), MA(1), MA(2), ARMA(1,1),
ARMA(2,1) and ARMA(1,2) models have been adopted, respectively. Table 4 has given the results
of parameter estimation, where, c is the intercept parameter of the mean equation, ar1 and ar2
represent the coefficients of AR process with the lag order of 1 and 2, and ma1 and ma2 represent
the coefficients of MA process with the lag order of 1 and 2.

As can be seen in Table 4, the intercept parameters of each model prove to be marked at the
significance level of 5%. Among the estimations of AR(1), AR(2), MA(1), MA(2) and ARMA(1,1),
all of which show the significantly non-zero coefficients of the lag terms with associated probability
values of t statistics smaller than the significance level of 1%, the three information criteria (AIC,
BIC, LL) are best fit to be selected via the ARMA(1,1) process according to the maximum value of
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LL as well as the minimum value of AIC and BIC. Thus, the ARMA(1,1) model is selected as the
optimal fitting model to describe the mean of the Rt series. The mean equation is as follows:

tttt RR    11 6549.05751.00006.0

Moreover, the Portmanteau Q method and Lagrange Multiplier(LM) method are both employed
to test ARCH effect of the residuals sequence based on the ARMA(1,1) model with lag orders from
one to ten. Table 4 mainly exhibits the testing results of ARCH(10). And it is found that, under each
test, associated probability values of the higher-order statistics are approaching to zero with the
rejection of null hypothesis at the 1% significance level. Therefore, the residuals sequence turns out
to have an high-order ARCH effect, and a conditional heteroscedasticity model need to be further
introduced to fit the volatility of the Rt series.

Table 4: Estimation results of the ARMA model.

AR(1) AR(2) MA(1) MA(2) ARMA(1,1) ARMA(2,1) ARMA(1,2)

Parameter estimation

c 0.0006**
(2.00)

0.0006**
(2.00)

0.0006**
(2.00)

0.0006**
(2.00）

0.0006**
(2.00)

0.0006**
(2.00)

0.0006**
(2.00)

ar1 0.0756***
(4.55)

0.0791***
(4.77)

-0.5751***
(-3.33)

-0.4706
(-1.13)

-0.4595
(-1.07)

ar2 -0.0457***
(-2.75)

-0.0087
(-0.18)

ma1 0.0836***
(4.78)

0.0834***
(5.02)

0.6549***
(4.09)

0.5521*
(1.32)

0.5410
(1.26)

ma2 -0.0452***
(-2.77)

-0.0097
(-0.20)

2
t 0.0003423 0.0003417 0.0003421 0.0003415 0.0003411 0.0003412 0.0003412

Model optimization
LL 9315.69 9319.48 9316.76 9320.53 9322.39 9322.28 9322.28
AIC -18625.38 -18630.95 -18627.51 -18633.17 -18636.77 -18634.56 -18634.57
BIC -18606.80 -18606.17 -18608.93 -18608.39 -18611.99 -18603.59 -18603.59

ARCH(10)
LM 149.59*** 149.69*** 149.04*** 149.44*** 148.63*** 148.81*** 148.82***

Portmanteau
Q 1047.8*** 1040.1*** 1045.7*** 1044.9*** 1074.3*** 1066.0*** 1066.4***

Notes: t-statistic in parentheses. *,**,*** indicate the coefficients’ significance at the 10%, 5% and
1% levels, respectively. ARCH(10) is the test for ARCH effects with 10 lags by using squared

standardized residuals.

Second, since the simplest form of the GARCH(r,s) model can well describe the volatility of
most series, this article selects the GARCH(1,1) model to help further capture conditional
heteroscedasticity of the Rt series based on the ARMA(1,1) model. Besides, due to the non-normal
characteristics of the Rt series, ARMA(1,1)-GARCH(1,1) models under various error distribution
conditions, such as student’s t(std), skew-student’s t(sstd), generalized error(ged) , skew-
generalized error(sged) and normal(norm) distributions, will be respectively constructed and
estimated in the following. The estimation results are shown in Table 5, where, omega, alpha1 and
beta1 are successively the coefficients of intercept term, ARCH term and GARCH term.

In Table 5, it is found that, under each distribution condition, the parameter omega doesn’t show
significance, while the parameters ar1 and ma1 of the mean equation and the parameters alpha1,

(4)
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beta1, skew and shape of the variance equation are marked at the confidence level of 99%,
indicating that the selected model is correct. Through plenty of regression testing and comparisons,
the models with the intercept term of the mean equation prove to have better fitting effect under
three information criteria (AIC, BIC, LL). Then, the cases within normal(norm), skew-student’s
t(sstd) and skew-generalized error(sged) distributions are excluded from consideration due to their
non-significant or less significant estimates of intercept parameter c. By comparison, values of AIC
and BIC in the case of student’s t distribution are smaller than the values in the case of generalized
error distribution. Thus, the ARMA(1,1)-GARCH(1,1) model based on student’s t distribution has
been determined to be the optimal model. The equation is as follows.
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In Eq. (5), both of alpha1 and beta1 in the variance equation are larger than zero, and the sum
value of these coefficients equals about 0.999(close to one but less than one), which meets the
constraint conditions of stationary process and reflects higher volatility persistence. According to
the results of ARCH(10) using LM test statistics, as indicated in Table 5, associated probability
values of the higher-order statistics are much higher than the significance level of 10%, accepting
the null hypothesis of no remaining ARCH effects. Thus, it can conclude that the ARMA(1,1)-
GARCH (1,1) model under student’s t distribution does a better job to capture the volatility
clustering of the Rt series.

Table 5: Estimation results of the ARMA-GARCH model.
ARMA(1,1)
-GARCH(1,1)

-norm

ARMA(1,1)
-GARCH(1,1)

-std

ARMA(1,1)
-GARCH(1,1)

-sstd

ARMA(1,1)
-GARCH(1,1)

-ged

ARMA(1,1)
-GARCH(1,1)

-sged
Parameter estimation

c 0.000485*
(2.003)

0.000933***
(4.109)

0.000485*
(2.037)

0.000884***
(3.867)

0.000395
(1.620)

ar1 -0.6480***
(-6.002)

-0.6599***
(-6.037)

-0.6952***
(-8.710)

-0.6519***
(-4.574)

-0.7076***
(-16.967)

ma1 0.7186***
(7.283)

0.7266***
(7.258)

0.7598***
(10.537)

0.7154***
(5.433)

0.7701***
(20.395)

omega 0.000001
(0.585)

0.000001
(1.035)

0.000001
(1.026)

0.000001
(0.932)

0.000001
(0.961)

alpha1 0.0524***
(3.163)

0.0645***
(6.373)

0.0654***
(6.147)

0.0589***
(5.326)

0.0609***
(5.230)

beta1 0.9445***
(55.692)

0.9345***
(91.880)

0.9336***
(87.306)

0.9389***
(81.961)

0.9366***
(77.353)

shape 6.656***
(10.874)

7.0164***
(10.344)

1.380***
(36.618)

1.4136***
(33.905)

skew 0.8660***
(42.952)

0.8758***
(44.568)

Model optimization
LL 9792.423 9863.032 9882.468 9860.169 9880.054
AIC -5.402 -5.441 -5.451 -5.439 -5.449
BIC -5.392 -5.429 -5.437 -5.427 -5.436

ARCH(10)

LM 6.187
(p=0.799)

4.324
(p=0.9316)

4.087
(p=0.9433)

5.247
(p=0.8741)

4.765
(p=0.9063)
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Notes: t-statistic in parentheses. *,**,*** indicate the coefficients’ significance at the 10%, 5% and
1% levels, respectively. ARCH(10) is the test for ARCH effects with 10 lags by using squared

standardized residuals.
Finally, in order to explore whether leverage effect exists or not, the ARMA(1,1)-EGARCH(1,1)

model is estimated under various error distributions. Table 6 shows two example cases within
student’s t(std) and skew-student’s t(sstd) distributions, where, the parameter gamma1 measures the
asymmetry effect. As can be seen, although the parameter gamma1 is negative, it is not significant
at all, demonstrating that there is no obvious asymmetry or leverage effect existing in the volatility
of CSI All Share Health Care Index during the sample period. Furthermore, the ARMA(1,1)-
EGARCH(1,1) model hasn’t eliminated the heteroscedasticity of the original residuals sequence.

Table 6: Estimation results of leverage effect.
ARMA(1,1)-EGARCH(1,1)-std ARMA(1,1)-EGARCH(1,1)-sstd

Coeffcient t value Pr(>|t|) Coeffcient t value Pr(>|t|)
mean 0.00092*** 5.078 0.00000 0.00044* 1.855 0.06365
ar1 -0.6696*** -26.526 0.00000 -0.7026*** -15.129 0.00000
ma1 0.7315*** 31.269 0.00000 0.7633*** 18.152 0.00000
omega -0.0607** -10.653 0.00000 -0.0677** -2.408 0.01603
alpha1 0.1445*** 13.010 0.00000 0.1479*** 2.588 0.00965
beta1 0.9926*** 1271.685 0.00000 0.9917*** 269.322 0.00000
gamma1 -0.00016 -0.019 0.98487 -0.0022 -0.339 0.73461
shape 6.6108*** 9.812 0.00000 7.0041*** 5.637 0.00000
skew 0.8591*** 42.453 0.00000
LL 9867.836 9888.994
AIC -5.443 -5.454

ARCH (3) 6.123**（p=0.01334） 5.408**（p=0.02004）

Notes: *,**,*** indicate the coefficients’ significance at the 10%, 5% and 1% levels, respectively.
ARCH(3) is the LM test for ARCH effects with 3 lags by using squared standardized residuals.

4.3. Model Forecasting

To test the forecasting performance of the ARMA(1,1)-GARCH(1,1) model on CSI All Share
Health Care Index, the static prediction method is used to make short-term predictions for the
logarithmic returns of the index in the 22 trading days after November 29, 2019. To be compared
with the out-of-sample data, the predicted values of index returns have been manually restored to
the predicted values of index prices. As shown in Table 7, two popular measures, the Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE), are calculated to evaluate and compare
prediction accuracy of the ARMA(1,1)-GARCH(1,1) model under four error distributions. Among
the four cases, the ARMA(1,1)-GARCH(1,1) model under student’s t distribution has the minimum
value of MAE and RMSE, demonstrating again that the optimal model has the best imitative effect
and forecasting power on the Rt series.

Table 7: Forecasting performance under four conditions.

ARMA-GARCH-std ARMA-GARCH-ged ARMA-GARCH-norm ARMA-GARCH-sstd

RMSE 90.44594 90.50483 90.8428 90.94757
MAE 75.18617 75.20373 75.5488 75.65510
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Table 8, below, has specifically listed the forecasting errors by using the optimal model.
Unexpectedly, there is a certain degree of deviations existing between the predicted values and the
actual values with the maximum absolute value of 2.14%, the minimum absolute value of 0.08%,
and the average deviation value of 22 days reaching 0.77%. As a matter of fact, the fluctuation of
index returns is usually ranging between -2% and 2% over a single trading day. Thus, in a strict
sense, the forecasting errors are relatively large, which illustrates that although the ARMA(1,1)-
GARCH(1,1) model with student’s t distribution can better describe the features of the index returns,
it is still lacking in prediction accuracy to some extent.

Table 8: Forecasting errors under the optimal model.

Date Error(%) Date Error(%) Date Error(%) Date Error(%) Date Error(%)

12-02 1.16 12-09 1.66 12-16 -0.69 12-23 1.16 12-30 -0.26
12-03 0.18 12-10 -0.75 12-17 -0.83 12-24 -0.34 12-31 -2.14
12-04 -0.43 12-11 0.35 12-18 1.13 12-25 0.08
12-05 -0.98 12-12 0.24 12-19 -0.35 12-26 -0.57
12-06 -0.49 12-13 -1.43 12-20 0.97 12-27 0.80

5. Conclusions

Given the recent considerable focus from investors on the health care sector of Chinese stock
market, it is meaningful to analyze the features of returns and its volatility of the sector index. To
this end, the ARMA-GARCH model has been applied by using daily data of CSI All Share Health
Care Index from January 4, 2005 to November 29, 2019. And the following conclusions can be
drawn.

First, the return rate of CSI All Share Health Care Index shows non-normal characteristics of
high kurtosis and fat tail with obvious volatility clustering and conditional heteroscedasticity. And
this is consistent with the previous evidence on Chinese overall stock market indexes such as SSE
composite index and SZSE component index. However, according to the estimation results of the
ARMA(1,1)-EGARCH(1,1) model, there is no strong evidence of the existence of leverage effect
or asymmetric effect which is often observed in stock markets, in other words, the volatility of the
index returns shows a similar degree of response to negative shocks and positive shocks.

Second, according to the empirical results of the ARMA(1,1)-GARCH(1,1) model under five
different error distributions, although the ARMA(1,1)-GARCH(1,1) model under student’s t
distribution proves to be the optimal model fit for effectively characterizing the returns series of
CSI All Share Health Care Index, it doesn’t perform an acceptable short-term forecasting power for
the index.

Here are two possible explanations. On the one hand, the parameters are uncertain in reality, so it
is difficult for the ARMA-GARCH model with constant parameters to capture the instantaneous
structural changes of the series through collecting data from various time in an equivalent way. On
the other hand, for lack of the consideration of other potential factors or exogenous variables, the
modeling of univariate time series can only dig out part of the laws, which leads to the lower
prediction accuracy. For investors’ part, the movement of sector index prices or returns is
dynamically influenced by many uncertain factors like industrial policies and market circumstances.
Thus, it is necessary to further consider related factors and explore the combination of non-linear
models to improve prediction accuracy and achieve a better forecasting performance.
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